
K. Miesenberger et al. (Eds.): ICCHP 2008, LNCS 5105, pp. 346–353, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Development Toolkit for
Unified Web-Based User Interfaces

C. Doulgeraki1, N. Partarakis1, A. Mourouzis1, and C. Stephanidis1,2

1 Foundation for Research and Technology – Hellas (FORTH)
Institute of Computer Science
Heraklion, GR-70013, Greece

{cdoulger,partarak,mourouzi,cs}@ics.forth.gr
2 University of Crete, Department of Computer Science

Abstract. EAGER is a prototype development toolkit that allows embedding
accessibility and ease of use for all potential users into Web-based artefacts.
Web-based user interfaces developed by means of the EAGER toolkit incarnate
the concept of Unified User Interfaces and exhibit adaptation behaviour with
respect to diverse user abilities, requirements and preferences. Ultimately, the
process of employing EAGER is significantly less demanding in terms of time,
experience and skills required from the developer, than the typical process of
developing for the “average” user.

Keywords: Unified User Interfaces, Adaptation, Design for All, User profiling.

1 Introduction

The Web has evolved into a continuously growing source of knowledge, information and
services, potentially accessed anytime and from anywhere. Web users are potentially all
citizens. Therefore universal access to the Web emerges as a fundamental requirement in
the context of the Information Society [1], necessitating approaches that ensure accessi-
bility and usability of Web-based applications for users with diverse characteristics and
requirements. Still, the vast majority of Web applications today are designed for the
“typical” or “average” user, while accessibility is - at best - addressed through confor-
mance to guidelines, thus producing “one-size-fits-all” results that may not be optimal for
some target use group, or necessitate additional assistive technologies.

Recent approaches to universal access and design for all have emphasised the cen-
tral role of user interface adaptation towards satisfying the needs and requirements of
diverse target user groups. So far, adaptation has been explored mainly in the context
of independent applications for desktop environments. In the Web environment, adap-
tation techniques have mostly been applied at the level of user agents (e.g., the
AVANTI browser [3]). However, such approaches are limited by the fact that the
user, in order to gain access to the Web, must have the actual product installed on the
computer used. On the other hand, intermediary agents, acting as filtering and trans-
formation tools, have also been proposed for building alternative versions of Web
content based on usability heuristics and accessibility recommendations. The practical

 A Development Toolkit for Unified Web-Based User Interfaces 347

exploitation of this concept (e.g., [4]) has highlighted a number of issues that tend to
reduce the universality of the approach, leading to the development of specialised
filters for each website parsed by an intermediary agent. Clearly, the diversity charac-
terising Web users and usage, for instance in terms of technological skills and experi-
ence, interaction abilities and preferences, access platforms and input/output devices,
application domains and user tasks cannot be addressed adequately by just “fixing”
the rendered html output.

2 The Unified Web-Based User Interfaces Methodology

This paper presents the first approach worldwide targeted to support and provide the
means for the development of inclusive Web-based user interfaces (WUIs) capable to
adapt to multiple and significantly different user profiles and contexts of use. To this
purpose, the Unified Web Interfaces (UWIs) method is proposed, building on the
Unified User Interface (U2I) methodology [2] for supporting the development lifecy-
cle of user interfaces (UIs) capable of adaptation behaviour in terms of content, navi-
gation, layout and user interaction models.

Fig. 1. Architecture of Unified Web-based Interfaces (UWIs)

The basic components of the UWI architecture (see Fig. 1) are:

• The User Information Component (UIC); responsible for collecting and
propagating attributes related to the characteristics of each specific user.

• The Context Information Component (CIC); responsible for collecting and
propagating attributes related to the context of use.

• The Decision Making Component (DMC); in charge of the overall decision
making regarding the conditional activation – deactivation of interaction mo-
dalities and interface elements.

• The Designs Repository (DRE); a repository of alternative designs.

• The Dialogue Controls Component (DCC); responsible for assembling the
various elements into a concrete interactive front-end.

348 C. Doulgeraki et al.

2.1 User Information Component (UIC)

The UIC (see Fig.2) acts as a server for collecting and providing information about
user profiles. Each user profile contains attribute values automatically identified or
specified by the user, both prior and during interaction. To collect such information
during the interaction, a specific monitoring mechanism is used inside the UIC. The
User Profiles Repository is a database of all users and the corresponding profile data
records. On the other hand, the User Components Repository stores information re-
garding the conditional activation - deactivation of interactive elements per user as
propagated by the DMC. To achieve bidirectional transmission of data, specialised
Web Services and Logic are incorporated acting as a proxy class to the implementa-
tion underlying these two repositories. The Interaction Monitoring Module provides
the mechanisms mentioned above for monitoring the interaction history of each user
and inform accordingly the User Profiles Repository for future use. The data recorded
by this module includes records of successful or unsuccessful completion of actions,
the subjective preferences of navigation options, etc. The core element of the UIC is
the Profiling Module, which is responsible for propagating User Profile information
to the DMC, and additionally acts as an interface to the rest of the UWI components
as well as to specialised profiling UI modules, such as:

• The User Profiles Statistics UI module, which presents statistics regarding the
popularity of the various designs and settings available.

• User Profile Selection UI module, which enables the user to choose among pre-
defined user profiles or to configure manually a new one.

• User Profiles Administration UI module, which allows site administrators to de-
fine predefined profiles and facilitate their main target user groups.

Fig. 2. The User Information Component (UIC) architectural model

Fig.3 depicts an example of the attribute value based user profile model. Similar
considerations hold for the CIC presented in the next section.

2.2 Context Information Component (CIC)

The CIC is intended to collect and propagate context attribute values (machine and
environment) of two types: (a) (potentially) static, meaning unlikely to change during
interaction, e.g., browser and peripheral equipment; and (b) variant, dynamically

 A Development Toolkit for Unified Web-Based User Interfaces 349

Fig. 3. Example of a User Profile instance

changing during interaction (e.g., due to environment noise, or the failure of particular
equipment, etc.). A Context Monitoring Module that has the responsibility to monitor
context changes and propagate this information to the User Profiling Module men-
tioned above. This module in turn enriches a User Context Profile Repository with
these context specific attributes to be used in the process of decision making. Clearly,
the attributes to be supported dynamically by CIC are quite limited, due to the current
lack of methods for collecting such information from the client side.

2.3 Decision Making Component (DMC)

The DMC decides, in essence, when, why and how adaptation will occur. In other
words, it entails the logic regarding the conditional activation and deactivation of
alternative UI components according to user and usage attributes propagated by the
UIC and the CIC. The core of this component consists of a number of implemented
rules representing the design space of the user interface by mapping hierarchically
various user attributes to appropriate alternative designs. For example, the decision
logic for presenting links can be the following:

• if web knowledge belongs to {high}, then use coloured links;

• if web knowledge belongs to {moderate}, then use underlined links;

• else use push buttons.

2.4 Dialogue Controls Component (DCC)

The role of DCC is to apply the interface adaptations decided by the DMC and structure
the final front-end of the underlying application using the selected dialog components.
More specifically, this component (i) provides the implementation of the alternative
dialog components of a self-adapting interface in the form of dynamic libraries; (ii) mod-
erates and administrates the alternative dialog components; and (iii) maintains a record of
user interaction with alternative dialog components.

2.5 Designs Repository (DRE)

The DRE component is populated with designs of alternative dialogues controls in a
form of abstract design and polymorphism. Polymorphic decomposition leads from an
abstract design pattern to a concrete artefact. U2I design emphasises on capturing
abstract structures and patterns inherent in the interface design, enabling incremental
specialisation towards the lower physical-level of interaction, and making therefore
possible to introduce design alternatives as close as possible to physical design [6].
This makes it easier to introduce at any stage additional values of design parameters

350 C. Doulgeraki et al.

(e.g., considering new types users and contexts) without affecting the whole of the
design space. Fig.4 depicts an example of polymorphic task hierarchy, illustrating
how two alternative dialogue styles for an “upload file” task may be designed. Alter-
native decomposition “styles” are depicted in the upper part, and an exemplary poly-
morphic decomposition at the lower part. Fig.5 includes physical design annotation
corresponding to the alternative styles.

Fig. 4. The polymorphic task hierarchy concept

Fig. 5. Physical design alternatives (for File uploader)

In the depicted process, the following primary decisions need to be taken: (a) at
which points of a task hierarchy polymorphism should be applied, based on the con-
sidered (combinations of) user- and usage-context- attributes; and (b) how different
styles behave at run-time. This is performed by assigning to pair(s) of style (groups)
design relationships. These decisions need to be documented in a design rationale that
directly associates user- / usage-context- parameter values with the designed artefacts.
As a minimum requirement, such a rationale should document [2]: related task, design
targets leading to the introduction of the style, supported execution context, style
properties and design relationships with competing styles.

3 The EAGER Toolkit

In order to facilitate Web developers in applying the proposed UWI method in prac-
tice, a prototype development toolkit, named EAGER1, was developed. EAGER is an

1 EAGER stands for “toolkit for embedding accessibility, graceful transformation and ease of

use in Web–based products”.

 A Development Toolkit for Unified Web-Based User Interfaces 351

advanced library of the core UWI architecture components: User Information, Con-
text Information, Decision Making, Dialogue Controls (activation/deactivation), of
the primitive UI elements with enriched attributes (e.g., buttons, links, radios, etc.), of
the structural page elements (e.g., page templates, headers, footers, containers, etc.),
and of the fundamental abstract interaction dialogues in multiple alternative styles
(e.g., navigation, file uploaders, paging styles, text entry). The EAGER toolkit has
been developed in Microsoft® Visual C# .NET and according to the UWI framework
briefly presented above. The technologies that were used for the development of the
EAGER toolkit include:

• Microsoft Visual C# .NET for the implementation of the UI modules.

• Microsoft Visual C# .NET and XML for Business Logic and Web Services.

• Microsoft SQL server 2000 for the database implementation.

For the development of EAGER, a number of UI elements were designed and im-
plemented in various forms (polymorphic task hierarchies) according to specific user
and context parameters values. This phase provided input to the actual development
process of EAGER, which involved the implementation of the alternative interaction
elements and of the mechanisms for facilitating the dynamic activation - deactivation
of interaction elements and modalities based on individual user interaction and acces-
sibility preferences. The EAGER toolkit was then employed to develop an advanced
portal2 for the European Design for All and e-Accessibility (EDeAN) network as a
proof of concept (see Fig.5). This effort provided valuable feedback on a number of
issues, and proved the viability and usefulness of using EAGER in the development
of large scale applications. A number of alternative evaluation techniques were ap-
plied to EAGER and to the developed prototype portal, including conformance to the
W3C accessibility guidelines for Web content.

In summary, EAGER allows Microsoft® .NET developers to create interfaces that
conform to W3C accessibility guidelines and which are able to adapt and interchange
modalities, metaphors and user interface elements as appropriate for each individual
user, according to profile information and context specific parameters. The process of
employing EAGER is significantly less demanding in terms of time, experience and
skills required from the developer than the typical process of developing Web inter-
faces for the “average” user, due to the flexibility provided for designing and imple-
menting interfaces at an abstract task-oriented level. Using EAGER, designers are not
required to be aware of the low level details introduced in representing interaction
elements, but only of the high level structural representation of a task and its appro-
priate decomposition into sub tasks, each of which represents a basic UI and system
function. In conclusion, the EAGER toolkit offers, not only the aforementioned bene-
fits, but also opens a more promising direction. It is clear that using a standard UI
toolkit, a monolithic interface is created, whereas by using the EAGER toolkit, dy-
namically adaptable interfaces are generated.

2 http://hci-web7.ics.forth.gr/edean

352 C. Doulgeraki et al.

Fig. 6. Default view of the homepage of the EDeAN portal

Another key feature of the EAGER toolkit is its ability to be extended and include
an unlimited number of alternative interaction modalities and elements. This process
mainly entails the design and coding of the alternative interactions styles. Then, they
can be easily incorporated in the existing toolkit, simply by modifying the decision
logic for supporting their conditional activation and deactivation. Additionally, exist-
ing Web applications or parts of applications implemented with .NET can be easily
altered to encapsulate the EAGER toolkit attributes and, thereby, rendered accessible
and usable for various user categories, including novice users, users of Assistive
Technologies or portable devices, etc.

The proposed approach allows embedding in Web-based applications decision
making logic and automatic adaptation facilities for the benefit of accessibility and
better user experience. On the other hand, it has also proved that the proposed ap-
proach can produce Web applications that allow their users to choose themselves (i.e.,
customise) the designs they prefer most. Therefore, it is feasible to develop Web-
based interfaces that can support and import alternative designs for fully accessible
and personalised ways of interactions, without payoffs in terms of aesthetics or inclu-
siveness.

For detailed information regarding the proposed UWI method, the EAGER toolkit
and the example portal of EDeAN the reader may refer to [7].

 A Development Toolkit for Unified Web-Based User Interfaces 353

4 Conclusion and Future Work

A potential direction for future work concerns the integration of EAGER with a de-
sign support tool for the U2I Design method (e.g., [5]). Such integration will result
into a graphical tool to support the development process of UWIs from design to
implementation, and allow extending easily and semi-automatically the EAGER user
and context profiles and adaptation logic. Finally, another potential direction of future
work is to render the EAGER toolkit a web service, so that Web developers using
technologies other than .NET will be able to incorporate the EAGER adaptation logic
into their artefacts, by providing an interface for defining profiles and receiving deci-
sions regarding the activation – deactivation of alternative UI elements. Then, the
developer would only have to implement, if not available, the proposed alternative
designs in their own development environments.

Overall, the work presented here is considered as a significant contribution towards
embedding accessibility, graceful transformation and ease of use for all in future and
existing Web-based applications, and, ultimately, towards supporting individuals to
fully participate in the knowledge society, especially people at risk of exclusion.

References

1. Stephanidis, C. (ed.)., Salvendy, G., Akoumianakis, D., Bevan, N., Brewer, J., Emiliani,
P.L., Galetsas, A., Haataja, S., Iakovidis, I., Jacko, J., Jenkins, P., Karshmer, A., Korn, P.,
Marcus, A., Murphy, H., Stary, C., Vanderheiden, G., Weber, G., Ziegler, J.: Toward an In-
formation Society for All: An International R&D Agenda. International Journal of Human-
Computer Interaction 10(2), 107–134 (1998)

2. Savidis, A., Stephanidis, C.: Unified User Interface Design: Designing Universally Accessi-
ble Interaction. International Journal of Interacting with Computers 16(2), 243–270 (2004)

3. Stephanidis, C., Paramythis, A., Sfyrakis, M., Savidis, A.: A Case Study in Unified User
Interface Development: The AVANTI Web Browser. In: Stephanidis, C. (ed.) User Inter-
faces for All, pp. 525–568. Lawrence Erlbaum, NJ (2001a)

4. Alexandraki, C., Paramythis, A., Maou, N., Stephanidis, C.: Web accessibility through ad-
aptation. In: Proceedings of the 9th International Conference on Computers Helping People
with Special Needs (ICCHP 2004), Paris, France, July 7-9, pp. 302–309. Springer, Heidel-
berg (2004)

5. Antona, M., Savidis, A., Stephanidis, C.: A Process–Oriented Interactive Design Environ-
ment for Automatic User Interface Adaptation. International Journal of Human Computer
Interaction 20(2), 79–111 (2006)

6. Savidis, A., Stephanidis, C., Emiliani, P.L.: Abstract Task Definition and Incremental Po-
lymorphic Physical Instantiation: The Unified Interface Design Method. In: Salvendy, G.,
Smith, M.J., Koubek, R.J. (eds.) Design of Computing Systems: Cognitive Considerations
[Proceedings of the 7th International Conference on Human-Computer Interaction (HCI In-
ternational 1997)], San Francisco, USA, August 24-29, vol. 1, pp. 465–468. Elsevier, El-
sevier Science, Amsterdam (1997)

7. Doulgeraki, C., Partarakis, N., Mourouzis, A., Antona, M., Stephanidis, C.: Towards Uni-
fied Web-based User Interfaces. FORTH-ICS Technical Report, TR-394 (2007),
http://www.ics.forth.gr/publications/technical-
reports.jsp?raey=2007

	A Development Toolkit for Unified Web-Based User Interfaces
	Introduction
	The Unified Web-Based User Interfaces Methodology
	User Information Component (UIC)
	Context Information Component (CIC)
	Decision Making Component (DMC)
	Dialogue Controls Component (DCC)
	Designs Repository (DRE)

	The EAGER Toolkit
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

